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Abstract: Firstly, we show that the famous problem of 
 
“Can the unit interval [0,1] be equipped with a Boolean algebraic structure ?” 
 
is an ill-posed problem. In this sense, we notice that the conventional answer for this 
problem 
 
“[0,1] can not be equipped with a Boolean algebraic structure” 
 
has no value in itself. We argue that we need additional conditions to answer the above 
problem legitimately. 
  Secondly, we propose a new non-standard model of real numbers. 
  Thirdly, we prove that, based on this new model, there is an algorithm to define a 
Boolean algebraic structure on [0,1]. 
 
 
 

§§§§0. Introduction 

 
  There is an interesting problem in the field of AI, especially in the areas of, say, 
many-valued logics, expert systems, knowledge representation, reasoning, fuzzy theory, 
automated theorem proving and any topics with the probability and/or the (un)certainty 
etc. The conventional statement of the problem has the form of  



 

 

 
“Can the unit interval [0,1] be equipped with a Boolean algebraic structure ?”               
…(1) 
or 
“Can we define a Boolean algebraic structure on the unit interval [0,1] ?” 
 
  Why is this problem so interesting ? Because, the problem is closely related to the 
important issue of the coherence of real-valued classical logic. Here, the coherence 
means that 
 
“two equivalent formulas have the same value for any real-valued assignment of all 
atoms w.r.t. suitable logical operations ∧,∨,¬,→ etc over [0,1].” 
 
  Now, the first purpose of this paper is to claim that the above famous problem is a 
kind of ill-posed problem. Here, the notion of ill-posedness is a familiar one in the field 
of AI. In this case, we argue that the ill-posedness is located both in the interpretation of 
the unit interval [0,1] and in the realization methodology of operations ∧,∨,¬,→ etc. 
  The second purpose of this paper is to propose a novel non-standard model of real 
numbers, whose idea is profoundly concerned with the binary expression of real 
numbers. 
  The final and the main purpose of this paper is to show that we can positively solve 
the above ill-posed problem under the additional condition that 
 
“[0,1] is interpreted by the above non-standard model.” 
 
Precisely speaking, the result becomes the following form. 
 
Theorem  
We can concretely define functions ｃ, ｄ, ｎ which realize ∧, ∨, ¬ respectively 
in the sense of [0,1]-valued classical logic, whenever [0,1] is interpreted by the 
non-standard model. 
 
 

§§§§1. Ill-posedness 

 



 

 

  In order to claim the illposedness of the above famous problem (1), let's start our 
argument from a fundamental standpoint. 
  Suppose we are given the unit interval [0,1]. Then, what kind of semantics or 
interpretation can we attach to this syntactical expression [0,1]? One natural 
interpretation of [0,1] is that 
 
“it is a pure set of real numbers between 0 and 1”. 
 
This kind of interpretation is employed in set theory, whenever we are interested in the 
cardinality of [0,1]. Another natural interpretation of [0,1] is that 
 
“it is a totally ordered set of real numbers between 0 and 1, where the ordering relation 
is the usual real number ordering”. 
 
This kind of interpretation is usually employed whenever we are concerned about the 
ordering relation of real numbers. Other natural interpretations of [0,1] are 
 
“it is a subset of the field of real numbers” 
 
from a viewpoint of algebra and 
 
“it is a subset of real line” 
 
from a viwpoint of topology. Of course, there is yet another interpretation from a 
viewpoint of analysis.    
  Thus, we notice that there can be many kind of semantics of the same syntactical 
expression [0,1], the unit interval! Each semantics depends on the situation we employ. 
Nevertheless, it is one point that the analytic semantis is the most complex among the 
above in the sense that it contains all the other [0,1]-semantics. From this viewpoint, at 
a first glance, it apparently seems that the analytic interpretation is sufficient to manage 
[0,1] in all areas of AI. However, the matter is not so simple. In the above, we did not 
mention about the logical interpretation of [0,1], which should be the base of our 
argument, and the interpretation is quite different from the analytic one.  
  Now, what is the logical interpretation of [0,1] in this context ? It should be the 
interpretation which is inevitably related to the (, to some extent, correct) inference or 
the reasoning using the property of [0,1]. And so, as the result, it is interested in the 



 

 

(lattice) ordering relation defined on [0,1] as a logical system. Here, the most important 
point in this argument is the fact that  
 
“in many cases, real number ordering does not become the required lattice ordering 
imposed by the expected logic”. 
 
To see this, just take an example of a fuzzy system whose operations for (∧,∨) are not 
(min,max). 
  By recognizing the above arguments, we notice that the conventional naive problem 
(1) is short of additional conditions and so, it is ill-posed. That is, to answer (1), we 
must fix the supposed interpretation of [0,1] which, at least, includes both analytic and 
logical semantics. In other words, we ought to declare what kind of analytical model of 
[0,1] and what kind of lattice-ordering  over [0,1] we choose. In the next section, we 
show three typical claims which embody the ill-posedness of the problem (1). 
 
 

§§§§2. Three Claims 

 
  Throughout this section, we employ standard model of real analysis as the fixed 
analytic semantics for the sake of simplicity. Our first claim towards the positive answer 
for (1) has the following form. 
 
Proposition 2-1.  Existence Theorem 
[0,1] can be equipped with a Boolean algebraic structure by suitably choosing 
operations ｃ, ｄ, ｎ for ∧,∨,¬ respectively. 
 
Proof: Let ＢＢＢＢ be a Boolean algebra whose cardinality is 2 . We can extend a 1:1, onto 
map η:ＢＢＢＢ→[0,1] such that η(１１１１)＝1 and η(００００)＝0 to a lattice isomorphism λ:ＢＢＢＢ
≅≅≅≅ [0,1] by suitably defining an ordering relation < over [0,1]. Then, ([0,1],<) becomes a 
Boolean algebra.          □ 
 
The remarkable point is that the above is a typical exitence theorem. That is, we can't 
obtain any concrete operations (ｃ, ｄ,ｎ) for (∧,∨,¬) from the above positive result. 
First of all, at this point, we are not certain whether there are realization algorithms of 
ｃ, ｄ,ｎ over [0,1] or not. Concerning this aspect, we remember that the conventional 



 

 

answer for (1) has the following negative form 
 
｢[0,1] can't be equipped with a Boolean algebraic structure｣.                …(2) 
(See, for example, [4].) 
 
Since we have already obtain Proposition 2-1, we notice that the above statement (2) is 
wrong, or at least, it lacks  additional conditions. For example, the following form is a 
right statement. 
 
Proposition 2-2. 
[0,1] can't be equipped with a Boolean algebraic structure if we choose real number 
ordering ≦ as the lattice ordering. 
 
Proof: The linearly ordered Boolean algebra is the Boolean algebra ２２２２ of two elements 
{００００,１１１１} only.                 □ 
 
These two extreme and obvious (or even trivial) results Proposition 2-1 and Proposition 
2-2 show the ill-posedness of (1). 
  Now, by Proposition 2-2, we notice that in order to define Boolean algebraic structure 
on [0,1], we must choose a logical semantics such that (∧,∨) is not (min,max), 
because real number ordering fixes  
 
(∧,∨)＝ (min,max)  
 
  Extending this negative result one step towards the frontier, we obtain 
 
Theorem 2-3. 
[0,1] can't be equipped with a Boolean algebraic structure, if we choose T-norm 
(T-conorm) for ∧ (∨). 
 
Proof: (I) the case of T-norm 
Suppose that there is a T-norm ｃ for ∧ and an operation ｎ for ¬ over [0,1] such 
that ([0,1],ｃ,ｎ) form a Boolean algebra. Our goal is to reach a contradiction. For this 
aim, let r be a real number s.t. 0＜r＜1 and consider ｎ(r). Suppose ｎ(r)＝1, then  
 
r＝ｎ(ｎ(r))＝ｎ(1)＝0. 



 

 

 
This means that ｎ(r)≠1. Similarly, ｎ(r)≠0. So, we notice that 
0＜ｎ(r)＜1. 
  Now, suppose r≦ｎ(r), where ≦ is the real number ordering. Here, consider     
ｃ(r,r) and ｃ(ｎ(r),r). Since ([0,1],ｃ,ｎ) is a Boolean algebra, ｃ(r,r)＝r and ｃ(ｎ
(r),r)＝0. Thus, 
 
ｃ(r,r)＞ｃ(ｎ(r),r). 
 
This contradicts the condition that ｃ is a T-norm, because any T-norm ｔ must 
satisfy the following monotonic condition that,  
 
for any real numbers 0≦ x≦ u≦ 1 and 0≦ y≦ v≦ 1, ｔ (x,y)≦ｔ (u,v).              
…(3) 
 
  Similarly, from the other supposition of r＞ｎ(r), we get a contradiction via ｎ(r)＝
ｃ(ｎ(r),ｎ(r))＞ｃ(ｎ(r),r)＝0. 
 
(II) the case of T-conorm is similar.   □ 
 
  From this result, we recognize that, to obtain Boolean algebra over [0,1], neither ｃ 
for ∧ must be T-norm nor ｄ for ∨ must be T-conorm. However, to define a 
Boolean algebraic structure on [0,1], we need not restrict our attention to T-norms and 
T-conorms. To tell the truth, in order to define a suitable lattice ordering over [0,1] by 
using operations (ｃ,ｄ) for (∧,∨), they must satisfy the following idempotent 
condition as far as (∧,∨) is interpreted as (sup,inf) of the lattice ordering. 
 
For any real number 0≦r≦1,  
ｃ(r,r)＝ｄ(r,r)＝r. 
 
This is because ∧ and ∨ should be interpreted as inf and sup of the required lattice 
ordering from a logical semantics of [0,1]. 
 
Remark: You may interprete ∧, say, as × over [0,1]. As the result,  ｃ(0.5,0.5) 
becomes 0.25. Well, this is one thing. However, the fact that the formula A∧A does not 
become equivalent to A by the interpretation is another. The point is that you must 



 

 

propose a reasonable meaning of the interpretation!                 ┤ 
 
From the above observations, it is worth defining the next notion. 
 
Definition 2-4. 
(i) A binary operation ｂ over [0,1] is called “B-norm” if it satisfies 
1. ｂ(0,0)＝0 and ｂ(r,1)＝ｂ(1,r)＝r for all r∈[0,1]  (Boundary Condition) 
2. ｂ(r,s)＝ｂ(s,r) for all r,s∈[0,1]  (Commutativity) 
3. ｂ(r,ｂ(s,t))＝ｂ(ｂ(r,s),t) for all r,s,t∈[0,1]  (Associativity) 
4. ｂ(r,r)＝r for all r∈[0,1]   (Idempotentness) 
 
(ii) A binary operation ｂ over [0,1] is called “B-conorm” if it satisfies 
1'. ｂ(1,1)＝1 and ｂ(r,0)＝ｂ(0,r)＝r for all r∈[0,1]     (Boundary Condition) 
and the above conditions 2, 3, 4.       ┤                                                   
                                                                                     
  Thus, the notion of B-norm (B-conorm) is obtained from the notion of T-norm 
(T-conorm) by exchanging the monotonic condition (3) to the idempotentness 4. Using 
this definition, we notice that  
 
Proposition 2-5. 
In order to define Boolean algebraic structure on [0,1], we must choose operations of 
both B-norm for ∧ and B-conorm for ∨. 
  
Proof: Easy to check.                □ 
 
  Now, what kind of B-norms and B-conorms should we choose ? At this moment, the 
answer is open for the standard model of [0,1]. However, from a viewpoint of computer 
science, there is a quite interesting semantics of [0,1] based on the non-standard model 
of real numbers. In the following, we investigate the topic. 
 
 

§§§§3. Non-standard Binary Model of Real Numbers      

                                                                          
  In the following, we choose [0,1] instead of the whole set of real numbers ＲＲＲＲ as the 
target domain. (To argue ＲＲＲＲ, it is enough to transfer [0,1] by integers.) The aim of this 



 

 

section is to propose a new model of [0,1] based on the digital and the discrete world 
view. 
  Now, suppose the situation that we would like to represent a real number r∈[0,1] by 
the binary notation. We already know that this kind of expression is familiar in the field 
of information science. Here, there is one point which is worth noting.  The point is the 
fact that any real number which is generated by a sum of finite subset of {(1/2)n｜n＝
1,2,…} can be expressed by two different infinite binary decimals. For example, in the 
case of 0.5, we can expree it by either 
 
0.1000…                             …(4) 
or 
0.0111…                             …(5) 
   
To be more precise, from a viewpoint of standard model of real numbers, these two 
binary decimal expressions are suppoed to represent the same real number 0.5 based on 
the completeness property of real numbers. (The Convergence of Infinite Series)  
  On the other hand, from a viewpoint of digital expression based on {0,1}, these two 
are different objects. In other   words, they are syntactically different expressions. 
  Now, standing on the philosophy of knowledge representation, we recognize the 
following fact. Depending on the situations we choose, or even in the same context, 
there often happen the cases that the object as a semantical substance (in this case, the 
same real number 0.5) and the object as the syntactical expression (in this case, different 
expressions (4) and (5)) are mixed and confusedly used.  In these cases, there 
sometimes occurs  the state that we want to or need to distinguish syntactically 
different expressions as different objects. Especially when we are encountered the case 
that essentially infinite expressions are approximated by finite abbreviations, the 
necessity increases. (In this case, infinite decimals are approximated by finite decimals 
inside the computer.) 
  Grounding on these general observations, we employ the following idea as the 
foundation of our model of [0,1]. 
 
｢Since there happen the cases that we had better distinguish different syntactical 
expressions as different objects, it is reasonable to employ a model of [0,1] which can 
inherently interprete two different expressions (4) and (5) as different entities.｣        
 
Based on this idea, we can define a new model of [0,1] by the following way. 



 

 

 
Ⅰ Take the set 
 
   Ｄ＝{0.p1p2…pn…｜pn∈{0,1}} 
 
of binary infinite decimals as the universe of the model. 
 
Ⅱ Define two equivalence relations ＝, ≡ and two ordering relations , ≦ over 
Ｄ so that 
 
(i) ＝ is the syntactical identity over Ｄ, i.e., 
    0.p1p2…pn…＝0.q1q2…qn…  
    iff 
    pn＝qn for all n 
 
(ii)   ≡ is the semantical identity based on the standard model of [0,1], 
     i.e., 
     ＝⊂≡  
     and  
     0.p1p2…pn1000…≡0.p1p2…pn0111… 
     for all finite decimal  
     0.p1p2…pn . 
 
(iii)  is the lexicographical ordering over Ｄ, i.e., 
      0.p1p2…pn… 0.q1q2…qn… 
      iff 
      p1≦q1 or (p1＝q1 and p2≦q2) or … 
      where ≦ is the natural number ordering on {0,1}. 
                                                                                     
(iv)  ≦ is the semantical (real number) ordering based on the standard model 
                                                                                     
of [0,1], i.e., 
      ⊂≦  
      and 
      0.p1p2…pn1000…≦0.p1p2…pn0111… 
      for all finite decimal  



 

 

      0.p1p2…pn . 

     
Then, it is easy to check that (Ｄ,＝,≡, ,≦) becomes a model of [0,1] by suitably 
defining other operations ＋ ,×  etc based on the standard model of [0,1].         
((Ｄ/≡,＝',≦') becomes the standard model of [0,1], where ＝' is the identity over   
Ｄ/≡ and ≦' is the real number ordering corresponding to ≦.) 
  The essential difference between the above new model and the conventional standard 
model is that ＝' and ≦' are defined by means of the syntactical relations ＝ and  
over binary infinite decimals. Clearly, this new approach is different from the 
conventional approach. In this sense, our model can be called “a new non-standard 
model” of real numbers. 
 
Remark: As is well-known, there is another non-standard model of real numbers based 
on the technique of the ultrapower method, i.e., the model which admits the notion of 
“ infinitesimals”  based on the non-standard analysis. (See, for example, [6].) 
Compared with this ultrapower model, our new model is not so different from the 
standard model. To tell the truth, it is rather controversial that which model is more 
standard from a viewpoint of (not mathematics but) information science,  
ours or the conventional model.         ┤ 
 
  In the following, for the sake of convenience, let's call the above new non-standard 
model “binary model” of real numbers.  
 
 

§§§§4. Boolean Algebraic Structure on [0,1] Based on Binary Model 

                                                                          
 
  The merit of fuzzy theory is in its non-standardness as a logical system. That is, in 
order to represent the fuzzyness of a proposition, the theory admits a variety of 
interpretations of logical symbols. As the result, to obtain the richness of the 
representation, the theory even permits other sets than mere [0,1] as the truth-value 
domain (, i.e., the range of membership functions). Since the matter is so, sticking to the 
standard model of [0,1] as the base of the interpretation can be said to contradict the 
philosophy of fuzzy theory. Thus, the interpretation of [0,1] based on the binary model 
ought to become legitimate from a viewpoint of the flexibility of operations. Especially 



 

 

when we are trying to quantize membership functions by the finite approximation, the 
legitimacy increases. 
  Based on this philosophy, we can concretely construct a Boolean algebraic structure 
on [0,1]. Our main claim becomes the following. 
 
Theorem 4-1.  
Based on the binary interpretation, we can algorithmically define (ｃ,ｄ,ｎ) for (∧,∨,
¬) over [0,1] so that the resulting structure ([0,1],ｃ,ｄ,ｎ) becomes a Boolean 
algebra. 
 
Proof: Let ＮＮＮＮ be the set of all natural numbers and let ＢＢＢＢ＝(P(ＮＮＮＮ),∩,∪,Ｎ－Ｎ－Ｎ－Ｎ－) be the 
complete Boolean algebra generated from the power set P(ＮＮＮＮ) of ＮＮＮＮ. Then, it is 
well-known that the above ＢＢＢＢ becomes isomorphic to the following structure (２ＮＮＮＮ,ω-
∧,ω-∨,ω-¬), where 
 
２ＮＮＮＮ ＝{f｜f:ＮＮＮＮ→２} 
 
and, for any f,g∈２ＮＮＮＮ and for all n∈ＮＮＮＮ, 
 
ω-∧(f,g)(n)＝ min(f(n),g(n))   
ω-∨(f,g)(n)＝ max(f(n),g(n))   
ω-¬(f)(n)＝ 1－f(n).  
 
  By the way, there is a 1:1, onto map ψ:２ＮＮＮＮ→Ｄ, where Ｄ is the universe of binary 
model of [0,1] in the previous section. ψ is realized by the following correspondence. 
For any f∈２ＮＮＮＮ, 
 
ψ(f)＝0.f(0)f(1)f(2)…f(n)…. 
 
Then, based on the Boolean operations ω-∧,ω-∨,ω-¬, we can define operations 
ｃ,ｄ,ｎ on [0,1] so that (２ＮＮＮＮ,ω-∧,ω-∨,ω-¬) and ([0,1],ｃ,ｄ,ｎ) becomes 
isomorphic by the following way. For any r,s∈Ｄ, 
 
ｃ(r,s)＝ψ(ω-∧(ψ－1(r),ψ－1(s))) 
ｄ(r,s)＝ψ(ω-∨(ψ－1(r),ψ－1(s))) 
ｎ(r)＝ψ(ω-¬(ψ－1(r))). 



 

 

 
Thus, we obtain a concrete algorithm to define a Boolean algebraic structure on [0,1] by 
using the above defined ｃ,ｄ,ｎ.    □ 
                                                                                     
Three interesting properties of the above defined Boolean algebra are 
 
(1) it is complete as a Boolean algebra 
(2) ｃ is a B-norm and ｄ is a B-conorm 
(3) the lattice ordering < as a Boolean algebra is compatible with the real number 
ordering ≦ on [0,1] in the sense that, for any r,s∈Ｄ, 
 
    r < s → r≦s. 
 
The checks are easy. 
  Practically speaking, the above realization algorithm gives the following 
methodology. Given arbitrary  two real numbers r,s∈[0,1]. Translate  r,s to binary 
infinite decimals (or sometimes, binary finite decimal approximations).  The point is 
that we can choose one of two different binary decimals for the same real number which 
is generated by the finite subset of {(1/2)n｜n＝1,2,…} at our disposal. This flexibility 
becomes  the merit as fuzzy theory. Then, in order to define, say, r∧s, just use the 
above ｃ or ω-∧, and the result is again translated to the usual real number.   
 
 

§§§§5. Conclusion 

 
  We have shown that the famous problem (1) is an ill-posed problem. Then we 
propose a condition, based on which (1) is positively solved. The condition is closely 
related to the binary expression of real numbers and it gives a new non-standard model 
of real numbers. 
  By the way, for any natural number p≧2, we can define a non-standard model ＲＲＲＲp of 
real numbers based on p-ary notation of real numbers by using the similar argument to 
the discussion in §3. Especially when p＝2m for m∈ＮＮＮＮ, we can induce a Boolean 
algebraic structure on [0,1] by employing a suitable  lattice ordering. 
  For example, when m＝2, we can consider a Boolean algebra of the form               
 



 

 

         3 
   1         2 
         0 
 
Based on this fact, by using the non-standard model ＲＲＲＲ4  of real numbers whose 
universe Ｄ4 has the form {0.p1p2…pn…｜pn∈{0,1,2,3}}, we obtain another concrete 
algorithm which realizes a Boolean algebraic structure on [0,1] via the similar argument 
to the proof of Theorem 4-1, by changing the definition of ω-∧,ω-∨,ω-¬ to 
 
ω-∧(f,g)(n)＝ f(n)∧4g(n)  for all n∈ＮＮＮＮ  
ω-∨(f,g)(n)＝ f(n)∨4g(n)  for all n∈ＮＮＮＮ 
ω-¬(f)(n)＝ ¬4f(n)  for all n∈ＮＮＮＮ   
 
Here, ∧4 ,∨4 ,¬4 in the right hand side are the Boolean operations on 4. 
 
Thus, we notice that there are infinitely many different realization algorithms of 
Boolean algebraic structure on [0,1], depending on each different non-standard model of 
real numbers. ( More than one for each non-standard model ＲＲＲＲ2m  for m≧2, by 
employing different lattice ordering on 2m!) In this sense, the result of §4 is by no 
means trivial. 
  However, at this moment, whether there exists a concrete realization algorithm of 
Boolean algebraic structure on [0,1] based on the standard model of real numbers or not 
is open. 
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